(3) In order of magnitude, the energy stored in ocean waves is as much as the Earth receives from the sun in what length of time?

Let \(h \) be the wave height from trough to crest; \(h/2 \) is the amplitude. If \(y \) is the height of the surface at any point, measured from the mean surface, the potential energy there per unit area is \(\rho gy^2/2 \). But averaged over many wavelengths \(\bar{y^2} = h^2/8 \), so the potential energy per unit area averaged over a large region is \(\rho gh^2/16 \). Doubling this to include the kinetic energy, we have \(\rho gh^2/8 \) for the total wave energy per unit area of ocean. For example if \(h = 2 \) meters, this gives \(5 \text{ J/m}^2 \) for the mean energy density. Sunlight with a power density of \(1 \text{ kW/m}^2 \) is being intercepted at any moment by an area equal to \(1/4 \) the Earth’s surface. If waves with \(h = 2 \) meters prevailed over half the Earth’s surface, their energy would be equivalent to \(1/100 \) second of sunlight.