(3) Estimate the length of the longest free path experienced by a nitrogen molecule in the lowest kilometer of the Earth's atmosphere during the last billion years.

The lowest kilometer of the atmosphere contains 10^{43} nitrogen molecules with mean free path \bar{l} of 10^{-5} cm and speed 5×10^4 cm/s. The number of free paths in 10^9 years, call it N, is 1.5×10^{69}. If \bar{l} had been always and everywhere the same, the distributions of path lengths would have been exponential, and the probability would be 0.5 that the longest of the N paths exceeded $\bar{l} \ln(2N) = 160\bar{l} = 0.0016$ cm. But what about rare occurrences of abnormally low pressure, for instance, tornadoes? At half the pressure \bar{l} would be doubled, and a path as long as 0.002 cm would be found among a sample of only 10^{44} paths. That many occur in one hour in 10^5 m³. Perhaps the only safe statement we can make is something like this: the longest free path probably occurred during some rare event in which the local pressure dropped to a fraction f of 1 atm. It was longer than 0.002 cm, but not longer than $100 \times (10^{-5}/f)$ or $10^{-3}/f$ cm. (How the word local is to be understood in this context is an intriguing question.)